Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.

Identifieur interne : 000731 ( Main/Exploration ); précédent : 000730; suivant : 000732

Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.

Auteurs : Katja Hüve [Estonie] ; Irina Bichele [Estonie] ; Hedi Kaldm E [Estonie] ; Bahtijor Rasulov [Estonie] ; Fernando Valladares [Espagne] ; Ülo Niinemets [Estonie]

Source :

RBID : pubmed:31151267

Abstract

During exposure to direct sunlight, leaf temperature increases rapidly and can reach values well above air temperature in temperate forest understories, especially when transpiration is limited due to drought stress, but the physiological effects of such high-temperature events are imperfectly understood. To gain insight into leaf temperature changes in the field and the effects of temperature variation on plant photosynthetic processes, we studied leaf temperature dynamics under field conditions in European aspen (Populus tremula L.) and under nursery conditions in hybrid aspen (P. tremula × P. tremuloides Michaux), and further investigated the heat response of photosynthetic activity in hybrid aspen leaves under laboratory conditions. To simulate the complex fluctuating temperature environment in the field, intact, attached leaves were subjected to short temperature increases ("heat pulses") of varying duration over the temperature range of 30 °C-53 °C either under constant light intensity or by simultaneously raising the light intensity from 600 μmol m-2 s-1 to 1000 μmol m-2 s-1 during the heat pulse. On a warm summer day, leaf temperatures of up to 44 °C were measured in aspen leaves growing in the hemiboreal climate of Estonia. Laboratory experiments demonstrated that a moderate heat pulse of 2 min and up to 44 °C resulted in a reversible decrease of photosynthesis. The decrease in photosynthesis resulted from a combination of suppression of photosynthesis directly caused by the heat pulse and a further decrease, for a time period of 10-40 min after the heat pulse, caused by subsequent transient stomatal closure and delayed recovery of photosystem II (PSII) quantum yield. Longer and hotter heat pulses resulted in sustained inhibition of photosynthesis, primarily due to reduced PSII activity. However, cellular damage as indicated by increased membrane conductivity was not found below 50 °C. These data demonstrate that aspen is remarkably resistant to short-term heat pulses that are frequent under strongly fluctuating light regimes. Although the heat pulses did not result in cellular damage, heatflecks can significantly reduce the whole plant carbon gain in the field due to the delayed photosynthetic recovery after the heat pulse.

DOI: 10.3390/plants8060145
PubMed: 31151267
PubMed Central: PMC6630322


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.</title>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. shueve@gmx.de.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia. irina.bichele@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu</wicri:regionArea>
<wicri:noRegion>50411 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaldm E, Hedi" sort="Kaldm E, Hedi" uniqKey="Kaldm E H" first="Hedi" last="Kaldm E">Hedi Kaldm E</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. hedi.kaldmae@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. bahtijor@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Fernando" sort="Valladares, Fernando" uniqKey="Valladares F" first="Fernando" last="Valladares">Fernando Valladares</name>
<affiliation wicri:level="2">
<nlm:affiliation>Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid, Spain. valladares@ccma.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. ylo.niinemets@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia. ylo.niinemets@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31151267</idno>
<idno type="pmid">31151267</idno>
<idno type="doi">10.3390/plants8060145</idno>
<idno type="pmc">PMC6630322</idno>
<idno type="wicri:Area/Main/Corpus">000864</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000864</idno>
<idno type="wicri:Area/Main/Curation">000864</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000864</idno>
<idno type="wicri:Area/Main/Exploration">000864</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.</title>
<author>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. shueve@gmx.de.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia. irina.bichele@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu</wicri:regionArea>
<wicri:noRegion>50411 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kaldm E, Hedi" sort="Kaldm E, Hedi" uniqKey="Kaldm E H" first="Hedi" last="Kaldm E">Hedi Kaldm E</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. hedi.kaldmae@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. bahtijor@ut.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Valladares, Fernando" sort="Valladares, Fernando" uniqKey="Valladares F" first="Fernando" last="Valladares">Fernando Valladares</name>
<affiliation wicri:level="2">
<nlm:affiliation>Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid, Spain. valladares@ccma.csic.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. ylo.niinemets@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu</wicri:regionArea>
<wicri:noRegion>51006 Tartu</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia. ylo.niinemets@emu.ee.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn</wicri:regionArea>
<wicri:noRegion>10130 Tallinn</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plants (Basel, Switzerland)</title>
<idno type="ISSN">2223-7747</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">During exposure to direct sunlight, leaf temperature increases rapidly and can reach values well above air temperature in temperate forest understories, especially when transpiration is limited due to drought stress, but the physiological effects of such high-temperature events are imperfectly understood. To gain insight into leaf temperature changes in the field and the effects of temperature variation on plant photosynthetic processes, we studied leaf temperature dynamics under field conditions in European aspen (
<i>Populus tremula</i>
L.) and under nursery conditions in hybrid aspen (
<i>P. tremula</i>
×
<i>P. tremuloides</i>
Michaux), and further investigated the heat response of photosynthetic activity in hybrid aspen leaves under laboratory conditions. To simulate the complex fluctuating temperature environment in the field, intact, attached leaves were subjected to short temperature increases ("heat pulses") of varying duration over the temperature range of 30 °C-53 °C either under constant light intensity or by simultaneously raising the light intensity from 600 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
to 1000 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
during the heat pulse. On a warm summer day, leaf temperatures of up to 44 °C were measured in aspen leaves growing in the hemiboreal climate of Estonia. Laboratory experiments demonstrated that a moderate heat pulse of 2 min and up to 44 °C resulted in a reversible decrease of photosynthesis. The decrease in photosynthesis resulted from a combination of suppression of photosynthesis directly caused by the heat pulse and a further decrease, for a time period of 10-40 min after the heat pulse, caused by subsequent transient stomatal closure and delayed recovery of photosystem II (PSII) quantum yield. Longer and hotter heat pulses resulted in sustained inhibition of photosynthesis, primarily due to reduced PSII activity. However, cellular damage as indicated by increased membrane conductivity was not found below 50 °C. These data demonstrate that aspen is remarkably resistant to short-term heat pulses that are frequent under strongly fluctuating light regimes. Although the heat pulses did not result in cellular damage, heatflecks can significantly reduce the whole plant carbon gain in the field due to the delayed photosynthetic recovery after the heat pulse.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31151267</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2223-7747</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>May</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Plants (Basel, Switzerland)</Title>
<ISOAbbreviation>Plants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E145</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/plants8060145</ELocationID>
<Abstract>
<AbstractText>During exposure to direct sunlight, leaf temperature increases rapidly and can reach values well above air temperature in temperate forest understories, especially when transpiration is limited due to drought stress, but the physiological effects of such high-temperature events are imperfectly understood. To gain insight into leaf temperature changes in the field and the effects of temperature variation on plant photosynthetic processes, we studied leaf temperature dynamics under field conditions in European aspen (
<i>Populus tremula</i>
L.) and under nursery conditions in hybrid aspen (
<i>P. tremula</i>
×
<i>P. tremuloides</i>
Michaux), and further investigated the heat response of photosynthetic activity in hybrid aspen leaves under laboratory conditions. To simulate the complex fluctuating temperature environment in the field, intact, attached leaves were subjected to short temperature increases ("heat pulses") of varying duration over the temperature range of 30 °C-53 °C either under constant light intensity or by simultaneously raising the light intensity from 600 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
to 1000 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
during the heat pulse. On a warm summer day, leaf temperatures of up to 44 °C were measured in aspen leaves growing in the hemiboreal climate of Estonia. Laboratory experiments demonstrated that a moderate heat pulse of 2 min and up to 44 °C resulted in a reversible decrease of photosynthesis. The decrease in photosynthesis resulted from a combination of suppression of photosynthesis directly caused by the heat pulse and a further decrease, for a time period of 10-40 min after the heat pulse, caused by subsequent transient stomatal closure and delayed recovery of photosystem II (PSII) quantum yield. Longer and hotter heat pulses resulted in sustained inhibition of photosynthesis, primarily due to reduced PSII activity. However, cellular damage as indicated by increased membrane conductivity was not found below 50 °C. These data demonstrate that aspen is remarkably resistant to short-term heat pulses that are frequent under strongly fluctuating light regimes. Although the heat pulses did not result in cellular damage, heatflecks can significantly reduce the whole plant carbon gain in the field due to the delayed photosynthetic recovery after the heat pulse.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hüve</LastName>
<ForeName>Katja</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. shueve@gmx.de.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bichele</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia. irina.bichele@ut.ee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kaldmäe</LastName>
<ForeName>Hedi</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0003-2210-4903</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. hedi.kaldmae@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. bahtijor@ut.ee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Valladares</LastName>
<ForeName>Fernando</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Museo Nacional de Ciencias Naturales, C.S.I.C., Serrano 115 dpdo, E-28006 Madrid, Spain. valladares@ccma.csic.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<Identifier Source="ORCID">0000-0002-3078-2192</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia. ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia. ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>PRG537</GrantID>
<Agency>Eesti Teadusagentuur</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>Centre of Excellence EcolChange</GrantID>
<Agency>European Regional Development Fund</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Plants (Basel)</MedlineTA>
<NlmUniqueID>101596181</NlmUniqueID>
<ISSNLinking>2223-7747</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">heat stress</Keyword>
<Keyword MajorTopicYN="N">hybrid aspen</Keyword>
<Keyword MajorTopicYN="N">leaf temperature</Keyword>
<Keyword MajorTopicYN="N">photosynthesis inhibition</Keyword>
<Keyword MajorTopicYN="N">photosystem II</Keyword>
<Keyword MajorTopicYN="N">stomatal conductance</Keyword>
<Keyword MajorTopicYN="N">sunflecks</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>05</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31151267</ArticleId>
<ArticleId IdType="pii">plants8060145</ArticleId>
<ArticleId IdType="doi">10.3390/plants8060145</ArticleId>
<ArticleId IdType="pmc">PMC6630322</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1997 Feb;113(2):441-450</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Dec;19(14):917-924</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2003 Mar;160(3):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12749085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2004 Feb;120(2):179-186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15032851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Mar;46(3):522-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2005 Feb;162(2):181-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15779828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2001;67(1-2):147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2006 May;97(5):831-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16478765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jun;75(2):364-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jun;90(2):575-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jan;98(1):198-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Jun;30(6):671-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Apr;31(4):407-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):178-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18328775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1777(11):1393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18778684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2009 Apr;100(1):29-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19343531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Nov;32(11):1538-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Jan;34(1):113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2012 Apr;144(4):320-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2012 May 1;169(7):664-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22341571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Sep;32(9):1066-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22887371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Sep;32(9):1062-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1991 Dec;186(1):88-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Sep;8(9):1304-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25997389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2015 Dec;30(12):714-724</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26476814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Sep;39(9):2027-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27287526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2017 Jan;23(1):209-223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27562605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Dec;172(4):2275-2285</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27770061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1979 Nov;43(2):195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Aug;63(2):256-262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2017 Sep 1;357(6354):917-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28860384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Jun;41(6):1251-1262</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29314047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Exp Bot. 2016 Dec;132:1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29367791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Jun;41(6):1247-1250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29508926</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>Estonie</li>
</country>
<region>
<li>Communauté de Madrid</li>
</region>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="Huve, Katja" sort="Huve, Katja" uniqKey="Huve K" first="Katja" last="Hüve">Katja Hüve</name>
</noRegion>
<name sortKey="Bichele, Irina" sort="Bichele, Irina" uniqKey="Bichele I" first="Irina" last="Bichele">Irina Bichele</name>
<name sortKey="Kaldm E, Hedi" sort="Kaldm E, Hedi" uniqKey="Kaldm E H" first="Hedi" last="Kaldm E">Hedi Kaldm E</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
</country>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Valladares, Fernando" sort="Valladares, Fernando" uniqKey="Valladares F" first="Fernando" last="Valladares">Fernando Valladares</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000731 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000731 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31151267
   |texte=   Responses of Aspen Leaves to Heatflecks: Both Damaging and Non-Damaging Rapid Temperature Excursions Reduce Photosynthesis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31151267" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020